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ABSTRACT

The theory of shockwave focusing (developed by

Silbiger I) is employed in an attempt to predict the extent

of focusing of explosive pulses at caustics as observed

experlientally by Barash. 2

Assuming a viscous medium and a physically reasonable

model for tWe explosive pulse, an order of magnitude com-

parison with experiment is obtained. The omission of

viscosity from the mathematical model leads to u-naccept-

ably large amplification at the caustic.
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I. flF.CUCTION

Because the speed of sound varies from point-to-point in most bodies of

water, shockwaves propagating under water do not travel in straight lines

but rather in curved paths. Under certain conditions and in certain regions

the paths converge, or focus, and sound energy which bad previously been dis-

tributed over a large volume of uster is concentrated into a small volume.

Regions in which this effect occurs are called convergence zones. Conver-

gence zones consist of a point, line or surface - called the caustic - where

the focusing is maximum, surrounded by a narrow region in which the focusing

effect diminishes with distance from the caustic.

Flor submerged sources of explosive sound, the pressure pulses appearing

at the caustics display marked amplification of the peak value and distor-

tion of the waveform.

A theory to describe the propagation and focusing of transient pulses in

convergence zones has been. proposed by SilIbiger. 1  The theory is based on

the fundamental assumptions of tba validity of linear acoustics and tIhe ab-

sence of viscosity in tlhe- propagating medium. Modifications to incorporate

viscous effects into the theory can be made and are discussed in a later part

of this report. Non-linear effects can also be included in the theory; how-

ever, they are not considered in this report.

By making a series of mathematical apprcXimations, the theory can be shown

to reduce to the results of geometric acoustiLcs, in regions off caustics and

not in shadow zones. Tbroaigh a modification of geometric acoustics, the

thbeory yields predictions of the pressure on the caustic itself and in the

-1-



The goal of this report is to report results of a numerical comparison

of the Silbiger theory with the experimental results of Barash. 2

The numerical comparison with experiment indicates that an order of mag-

nitude prediction of the peak amplification of a focused pulse is obtained

assuming a viscous medium and zero rise time source pulse.

II. COMPARISON OF THEORY AND EXPERIMEUT

A. Experimental Sound Speed Profile and Sound Sources

Barash2 observed the focusing of underwater shocxwaves produced by deto-

nating pentolite explosives in a quarry with a sound speed profile as shown

in Fig. 1. In one of his experiments the sound source was placed at a

depth of 50 ft for which the sound rays (determined by Snell's law) are shown

in Fig. 2. A caustic surface is evident. Barash observed the pressure pulse

produced at the caustic by the detcnation.

We shall be concerned with reproducing theoretically the experimental

results for a particular combination of experimental parameters: charge

iweight, 0.122 ib; charge depth, 50 ft; and a horizontal rane (to the&- obser-

vation point on the caustic) of 300 ft, at which the otustic depth .as

29.2 ft.

B. Mathematical Model of Experiment

1. Modeling the Source Pulse

A fundamental assumption of the Silbiger theory of shock'wave focusing

is that non-linear effects are unimportant. These can arise from large am-

plitude pressure waves so we chose to consider the smallest explosive weight

experimentally employed (0.122 1b) in -ex expect e.on t'h-t linear acoustics

theory will be valid.

-2--- =- _- •



The pressure pulse produced in the vicinity of a submerged explosive

is usually said to have a negligible rise time and an exponential decay, the

decay constant and peak value being functions of the charge weight and type,

and the range.3 For pentolite charges in a non-refractive meadium, we have

4 V1/3 113 -(t-RAc)
p(R,t) 2-2.25xl0 ---- e OtD (t >)

D c

flb)

in.

0 (t < R)(1
R

where w is the charge weight in pounds, R is the range in feet and c is

the velocity of sound. t,0 the decay constant, is given by

tD = 58 w1 'i w 0)2 (micro-secs) (2)

A "negligible" rise time presumably means a rise timee much smaller

than experimental equipment can detect. As of yet, investigators in the

field of underwater detonations have not achieved a measurement of the rise

time close to the explosion; the generally quoted (and use") value is zero.

Clearly there is some non-zero yet very small rise tirea; about the only

quantitative statement that can oe made is that the rise time must be much

shorter than an observable decay time.

In Silbiger's notation, the pressure radiated by a transient source

into an inhomogeneous medium obeys the following vave equation :1

2 p2 P(xxy,z,t)=- ;(x)(y)8(z) F(t) (3)
t 2() dt-

-3-
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where close to the source (located at the origin), the pressure is an

initially spherical wave of the form

p(R,t) = F~t-R/c) (t > R/c)

=0 (t <R/c) (4)

ani R is the range from the sorce, while c is t.he velocity of sound in the

neighborhood of the source.

For mthematical convenience, we model the source pulse [denoted by

F(t)] as a linearly increasing line segment foliowed by a linearly decreasing

line segment. Thus, the model source pulse is described by the equations

F(t) =0 t. < o (a)

to O<t<t (b)t - -- 0
0

A(t-t)

1t (c)

0t > tI (d) (5)

and is shown in Fig. 3.

Turning our attention back to Eqs. 1 and 2, we note that the exponents

1.13 and -0.22 appearing in Eqs. 1 and 2 would be replaced by unity and zero,

respectively, in an absorption-free linear fluid, corresponding to spherical

spreading and a time constant independent of distance. The peculiar exponents

appear due to a combination of non-linear effects of the water medium and

viscous attenuation. We make the assumption that both these effects accumu-

late with distance from the source so that the exponents 1.13 and -0.22 can

be replaced by one and zero, respectively, in the neighborhood of the source.

-4-
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With this assumption, we determine A by netting the peak value of Eq. 4

equal to the peak value of (the modified form of) Eq. 1, i.e.,

A 4l/3
S= 2.25 x 10 --R

or

A = 4a (2.25 x 10 ) ,l/3

Setting the exponent -0.22 in Eq. 2 equal to zero, the decay time in the

neighborhood of the source is then

tD = 58 WI13 (micro-sec)

or, for w =0.122 !bs,

D = 2.87 x 1O"9 sees

For convenience, we will henceforth take tD as 10-5 secs; it will turn out

that the theoretical predictions are only taeakly dependent on tD.

Note from Eq. 1 that, for small values of (t-R/c)/t.D, oe have

(t-RIc)

e tD (t-R/c)

tD

Comparing the above with Eq. 5c, we see that if the rise time of the

molel to is such that to << tl, as it should be physically, Eq. 5c will

approximate the (early times) linear portion of the decay of Eq. 1 if

tD -- l

-5-
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and

(t-R/c) ~
tD

or

(t-R/c) << o-5 secs.

That is, the model source pulse will accurately represent the decay of (the

modified form of) Eq. 1 only for a time interval up to 10-6 sees or so after

occurrence of the peak value.

In the absence of caustics and viscosity, tbe pressure predicted by

the Silbiger theory is, aside from a multiplicative amplitude factor de-

pendent on geometry, a time delayed replica of the source pulse.

After a pulse has propagated through a caustic, the pressure time

histo:ry is of the formt 4

p(x,y,z,t) = K Pr F(T) dT

where K is a geometry-dependent factor, F(T) is the ti•e history of the

source pulse, t is the time of observation and Pr denotes principal value.

From the definition of the principal value integral, it can be shown

that the pressure field will diverge at certain times if F(T) has any dis-

continuities. Therefore, in the absence of viscosity, the urodel source

pulse mwt have non-zero rise and decay times, lest the theory predict

infinite val •_s for the pressure in the presence of caustics.

-6-



It is shown in a later section that the effects of viscosity can be

incorporated into the the-ory by the introduction of a complex propagation

constant. Expressed as a Fourier integral over the Fourier spectrum 7(w)

of the source pulse, the pressure appears as

p~x~~z+t 2

where co=2arf is the circular frequency. 'T'he presence of the exponential damp-

ing factor can be shown to insure a finite pressure at all times., even in

the presence of dis continuities in F(T), provided that F(T) is finite and is

-if finite duration. Thus, if the medium is assumed to be viscous, the model

source pulse may have vanishing rise and/or decay times.

As it is well known. that sound waves propagating in water suffer viscous

attenuation, two model,- of -'the water medium are considered for the sake of

ccaziparison: one with viscosity included, the other without.

2. Modeling the Sound Speed Profile

The sound speed profile is modeled by the bilinear profile shown in

Fig. 4~a, along with it-- associated ray diagram (Fig. 4~b) corresponding to the

experimental sound source location. The model profile neglects the iso-

velocity segment of the experimental profile wh&ich originates at the vater

surface'. as well as the quarry bottom, walls and water surface.

Thle caustic in the inhomogeneous .layer corresponds to the eprmna

caustic. The second caustic extends to infinite distances only because the

surface isovelocity layer is omitted in the model. if the surface isovelocity

layer were included, consideration of thee permissible ray paths would show

that the second caustic would only extend a short distance from the co=-on
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point of origin of the two caustics. Some ambiguity is introduced by the

omission. On the one hand, in the geometrical acoustics limit the pressure

pulse is determined by sound which has traversed ray paths lying entirely

within the sloping portion of the actual profile, and these critical ray

paths are reproduced in the bilinear model. However, experimentally, a signal

with a distinct beginning is observed to precede the onset of the caustic-

focused pulse. This precursor signal most likely arises from sound which

has propagated, at least in part, along the intersection between the surface

isovelocity layer and the sloping portion of the actual profile.6 The

bilinear model will be unable, consequently, to predict this signal and,

indeed, some uncertainty in the interpretation of the experimental records

is the result.

The omission of the bottom, walls and water surface is justified since

a pulse reflected from any of these surfaces will arrive at the observation

point much later than the caustic-focused pulse, and in practice, produces

an easily identifiable trace in the experimental records.

The velocity profile of the bilinear model is described mathematically

by the relations

c(z) = c (1-az) z < 0

Oc z>0

0

The Silbiger theory then contains three parameters: the gradient (slope) of

the linearly increasing segment (denoted by a), the distance of the_ source

from the origin (denoted by zc) and the sound speed at the origin (c 0 ).

-8-
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These parameters are fixed by requiring that the model reproduce (i) the

experimental vertical distance between the source and point of observation

on the caustic (at the experimental horizontal range), (ii) the experimental

horizontal range (from the source) of the origin of the caustics, stnd (iii)

the average sound speed of the loe-r isovelocity segment of the experimizntai

profile. A reasonable fit of the experimental situation was obtained with

z = 20.8 feet

a = 2.707 x 10-1 (f) 1

mc = 4715 ft/sec

Smaller values of the parameter a yielded significant disagreement with the

exp'mrimental range to the caustic origin; larger values produce a large

discrepancy with the experimental vertical distance between source and caustic.

A comparison between the mod-! and the experiment is shown in Table 1, along

with s~e other choices of model parameters to provide a comparison. The

quantity (zo-zc) is the vertical distance between the source and the caustic.

R is the horizontal range.

Note that the horizontal range to the origin of the caustic is not well

defined experimentally (see Table 1 and Fig. 2). According to the bilinear

model, Zo-Zc should decrease monotonically as a fonction of horizontal range,

whereas in Table 1 the experimental value of zo-zc is non-monotonic for the

closest ranges. Our choice of model parameters yields a range of 227.7 feet.

-9-I!!!11



Table 1

VEMICAL SOMCB-CALTIC DMWM3~ (ipjm) VMUS ERIZOAL RAN (FT)

~~XPBRMN~~ BILIVAR W)ML ______

S= 20.8t ft 17.0t

=2.07ýd-ft &20. O-ft &=18.02h -ft-1-

a=.77x0tt a270710 3 t sO2 Ott =1.34b1%O0 t 1

Iz-e R -Zo R c f c R jz.Zc R Jzozc

1L93.11 28.6

209.8 27.81

210.1 28.0
215.8 27.1

2322 5. 227.7 23.3
23.2257 231.7 23.2 234.3 22.0

243.5 24.9 1243.7 22.8 244.3 21. 8 245.0 20.2

257.6 24.1 257.7 22.5 259.3 21.5 258.0 19.8

275.3 23.1 27- 22 274.3 21.3 275.0 19.5 292.6 j19.1

298.0 22.1 297.7 21.9 1299.3 21.0 !298.0 19.2 297.6 119.0

33.1.9 20.0 332.0 21.7 :332.0 1L8. 9 332.0 183

378.1 17.6 378.0 21.4 380.0 20.6 378.0 18.6 j378.0 17.9

389.9 .16.7 j3Q00. 0121.4 j390.0 .20.5 380.0 118.6 j390.0 !17.9
416.5 15.0 400.0 21.4 j400.0 20.5 1400.0 18.6 400.0 17.8

iio
me tI

-10

|iM



3. Pressure Time History on Caustic: Inviscid Medium Model

For points on the caustic (in a non-vi seous medium), the time history

of the pressure is given by7

p(r ,z ,t) = 2[ A~ %~)-/3tc----- (Il-1I)-1/3 ki(o)

c] I "2( I_2 2 _2]f

.Ti 7'(w) 11/6exp[.U[W'/c(o)_t_ /Ia4]).. (6)

where r. and zc are t.he cylindrical coordinates of the point of observation

on the caustic, c(o) is the sound speed at the origin, 0 is the sine of the

angle with respect to the vertical at which the ray touching the caustic et

the observation point leaves the source, n(zc) [r(z O)]is the irdex of refrac-

tion at the caustic (source), W" is the third derivative with respect to
C

of the pbase function W(9,z~r evlae t~~~,c, where

W(t',Z'r) = r + 2z- dz+

z Z_

an .is tNhe turning point for the ray characterized by ,A1()is h

Airy function evaluated at zero argument, 7(cD) is the Fourier transform of

F(t)0, defined by the relation

=(D F (t) e dt

and for the model source pulse (Fig. 3) is given by

A (eimto -1) eiwtl eito(

CD0 o1 0 1

i~4.1-



co is the circular frequency, Wc is W(( czCr c and t is the time. Using

Eq. 7, the pressure can be written in closed form:

1 1 1/3 F ;~ c(o)-1/3 2
p(r 1zt) q (Zc)_1w£c] [ln Ai(o)

tW 1 5/6A (tol 't- t O17 ( -1 + SGN

W 1 I W 5/6 W(t- c -0t)( F3l)3 + E t" C {•q-I)S (t- c)(06 +1'))

" - tc _t {(3-1)+SGN(t- c -t

(8)

where SGN(x) = x > 0

-- 1 x <0

The experimental data of Barash is presented not in terms of the

pressure directly, but rather in terms of the ratio of the observed pressure

pulse to the peak value of the pressure pulse which would be observed if the

water had a uniform velocity. This ratio is called the amplification

factor. For isovelocity water, the peak value of the pressure pulse would

be8

P ,so = 2.25 x i ( w103 2. 3 l
kVr +(z-zo2 ) 1

where w is the weight (in pounds) of the explosive and rc, z and z are

measured in feet.

-12-



Denoting the last bracketed expression on the right hand side of Eq. 8

by f(t,,tt), the amplification factor can be written as

P-iso FPP • f(t,tl,t 0 ) (9)

The factor FPP is determined by the location of the point of observation

and the parameters of the bilinear model. FPP, as a function of the model

parameters, is given in Table 2. The horizontal range (Re) to the caustic

origin is also shown. FPP is strongly dependent on the slope (a). R
C

vari - with both z and a. As mentioned before, the first set of parameters

offers the most reasonable fit to the experimental caustic curve.

The maximum value of the f-unction f(t,tl,to) is shown in Table 3 alomg

with the corresponding maximum value of the amplification factor, for a

series of values of t and t . The observed maximum amplification factor
1 0

is 4.05. All the predicted values are too high.

If the precursor pressure and the caustic-focused pressure combine

additively to yield the experimental record, the experimental amplification

factor would be reduced to about 3.3. It is not clear, however, if this

interpretation is correct but a theoretical study of precursors is in

progress. In any case, the predicted values will still be too high.

The function f(t tl0t) is shown in Fig. 5 Values of f(t,t,t) for

time intervals larger than about 10-6 seconds on either side of the origin

are not expected to be accurate because: (1) the model source pulse is valid

only up to times of 10-6 seconds or so, and (2) the high-frequency approxi-

mations made in the theory itself. These latter limitations have not been

-13-



~FF? AS FUNCION OF BILMEAR ýMOEL PAEAOTE1S

a (ft) z3 c(o) Ift/sec) R (fv

2.707, x 10-3 20.8 4715 .29;8 22`.$

2.024i x Lo-" 18.0o ,l4 .272 2k145

i.34! 7. 103 17, 0 4g71h ~ ho- 92.6

-14-.
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A ~Table 3

YAXL~MN VAUMhS OF f (t,t, ,t ) AND TIM AMPLMMUE FACTOGR

<0

AS 1UNCrIO1?S OF tANDt

-5--

Stl(sec) to(Sec) f~~ltoMX•XflJ&] AMP FA~CTOR

o- 1o737.37 9.6

"o 10 61.22 15.8

.0-0 10 95.94 24.7

--0 O0 25.4 6.5

10 10 69.2 17.7

-4i0- 2.1 x 1o- 17  2091 539

-4 -18 41~l86
10 3 x 10 86o

.,15
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investigated thorc,,ghly enough to .justify a discussion of them here. However,

a study of the limitations of the caustic bcundary layer formulae is In

progress. The slowly rising signal occurring prior to t=O has no definite

time of onset and may be associated with the high frequency nature of some

of the appro-ximations employed in the theory. Its significance has yet to

be studied in detail.

The experimentally observed time history (of the a,,plification factor)

is shown in Fig. 6. The precursor signal precedes the actual focused puIse.

The theory, as presently formulated, cannot predict tbls signalr.

The details of the experimental record are, to some extent, unreliable

in the s-nse that a sudden rise in pressure was recorded with a 10 micro-

second rise time.2 Hence, although it appears in Fig. 6 as though the ex-

pezimentally observed rise and decay times of the focused pulse are both on

the order of 10-5 secs, they may in fact be shorter than that.

At any rate, we can conclude from Table 3 that the rise time required

by the theory to reproduce the experimental peak amplification factor is

unrealistically large, since it nast be longer than 10-7 secs, for

t = 0-1 secs.

4. Pressure Ti-_ History at Caustic: Viscous Medium Mod-l

The time dependent ive eq~ution, including viscosity, is given by 9

vp VxYZ•t.i-•" + -- "p(x,y,z,t) - L P(x,Y,zt)

- - 6(x)8(y)6(z) MF~t) + 2,°)

-16-
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where v is the kinematic viscosity coefficient defined as

P

and

i = coefficien. of bulk viscosity

p = coefficient of shear viscosity

p = density

For a sinusoidal source time dependence) of strength •(w), t,.e

visccus wave equation reduces to

2 k n (z) 7 )
v +p= '- ") 6(I)6(y) (z) (10)

If

"--"(i ) I ()S<< )
- • - _--c (z ) I

and the variation of c(z) in the spatial domain of interest is sms.1 enough,

then in the factor [1 - :I R ]-i c(z) *y be replaced by e(o) and an effec-
C (Z)

tive propagation constant defined as follows

k
eff - - ....

VL 2 0c: (o)

=k[l+ L 2-?Jo I

Introducing the Harikel transform pair

f(f,z)=f p(r,z) Jo(keff 9r) r dr (12)
0

i

-17



p(r,z) f f f( ,z) Jo(keft 9r) k2 g (3

the transform of Eq. 10 becomes

d2 f(g,z) + k 0f [n (z) - ] f(9,z) 8- 8(z) (14)
dz - 2.r

Proceeding from Eqs. 12 and 13, the development of the caustic boundary

layer formalism proceeds as in the non-viscous case, the only difference

being the appearance of keff instead of k.

The pre-sstue time his, ..ry on the caustic is then given by

P(r ckZc ,t) = CD e:1 6A-Cc'') 2r [e J aaf(a)e'w[W,/c(°)-tI-Uc2 (1;

0

+ complex con.jugate]

where

1/3 2[ 2i ct c(G)-I/3 1i
41r~j (z, )- 2 )i(n 2 ( _g2yr 2c

2 c j
and

2c3(o)

For the model source pulse, tUP pressare time history is given by

( 2A)-At 0)-A.-t t YWc - W

1 (Z ) A-Ai(to) --A'2 t •t (-1I
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•/ where
heeH(t) 6 •['7F(7/l) 1F1 ( 1; It

+ tr 13 /12 JF t1
12 2it 2M

ii ta-1 r(7/12) 1F1 (7;• - +

L1 2'2' 4a

"and

W~ W

- _2c3 (o)

Using the asymptotic form of FI valid for t i2c - >> 1, it can be

verified that: (a) Eq. 15 reduces to the non-viscous pressure in the limit

, =' o Cno viscosity) and (b) Eq. 15 reduces to the non-v:.scous pressure in

j the limit to It01»/46 >> 1, it 1 
2 /4F >> 1. The first limit provides a check

on Eq. 15. The second limit implies that for sufficiently long rise and

decay times. viscous attenuation has no effect on the pressure time history.

This is reasonable since long rise and decay times reons there is very little

high frequency content in the Fourier spectrum of F(t). This being the case,

it is i=nterial whether the high frequency components get damped out or not.
S.... -cons3tant- u.

(Recall that viscous attenattion goes as e

A function analogous to f(t,tl,to) of Eq. 9 can be defined for the

viscous model. For a model source pulse with zero rise time and t =10

seconds, the function [denoted by fC (t)] is shown in Fig. 7. The viscosity
V
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related parameters are for fresh water: 5 0 = 0.01 g/cm-sec and i'=2.81 l.

c(o) was taken as 1.5 x 10 cm/sec and W as 300 ft, the distance along the

ray path zo the. point of observation. The amplification is then taken as

f (t) times FTP as defined in Eq. 9.

As in the non-viscous case, the, computed time history has a limited time

domain of validity. A numerical evaluation of the inequality of Eq. ii shows

that cv/c2(z) is on the order of 0.1 for a frequency of 10 Hz. Therefore

the computed time history should be unreliable for times shorter than about

I-I0 seconds. As mentioned before in connection with the inviscid medium,

the model source pulse becomes unreliable for times longer than 10-6 seconds

or so. Therefore, the computed time history should become erroneous for times

(beyond the origin) of the samee magnitude. In addition, the theory is based

on a high frequency approximation which will render the time history reliable

for only a short time interval after onset. However, a quantitative descrip-

tion of this source of error is not yet available.

For the model source pulse (Fig. 3) with to=O, t=l0 -5 sees, the theoreti-

cal peak amplification factor is 6.1, as compared to the experimental value

of 4.95.

If the precursor pressure and the caustic-focused pressure ,mbined

additively to yield the experimental record, then the experimental a;plifi-

cation factor would be about 3-3.

In either casa.% the predicted value is too high by 20 to 100 percent. if

a non-zero rise time in the model source pulse were assumed, the theoretical

prediction should decrease. It is possible that a more reasonable prediction

could be_ made with a non-zero yet physically reasonable rise time, but this

has not seen attempted.

-20-



III*

Assuning a source with finite rise time and an inviscid modium, the

computed amplification factors are much too high if a physically acceptable

rise time is assumed.

For a source with zero rise time radiating into a viscous medium, the

theoretically computed amplification factor is 20 percent to 100 percent too

high. A non-zero rise time might reduce the discrepancy.

-21-
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